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Although machine learning (ML) methods have recently gained popularity in both 
academia and industry as alternative risk assessment tools for efficient decision-making, 
inconsistent patterns are observed in the existing literature regarding their 
competitiveness and utility in predicting various outcomes. Drawing on a sample of the 
general youth population in the U.S., we compared the predictive accuracy of logistic 
regression (LR) and neural networks (NNs), which are the most widely applied approaches 
in conventional statistics and contemporary ML methods, respectively, by adopting many 
theoretically relevant predictors of the future arrest outcome. Even after fully 
implementing rigorous ML protocols for model tuning and up-sampling and 
down-sampling procedures recommended in recent literature to optimize learning 
algorithms, NNs did not yield substantially improved performance over LR if we still rely 
on a conventional dataset with relatively small sample sizes and a limited number of 
predictors. Nonetheless, we encourage more rigorous, comprehensive, and diverse 
evaluation research for a complete understanding of the ML potential in predictive 
capacity and the contingencies in which modern ML methods can perform better than 
conventional parametric statistical models. 

Introduction 

Predicting which individuals pose higher risks of an ini-
tial offense or recidivism within either the general youth 
population or ex-offender groups has long been challeng-
ing, although it is of primary interest for many researchers 
and practitioners (Farrington, 1987; Gottfredson & Mori-
arty, 2006). Determining who deserves closer monitoring 
and assistance is critical after release from institutions, 
during earlier stages of sanctioning (e.g., pretrial detention, 
incarceration/probation, early release, and security levels 
for prison inmates), or before individuals are involved in the 
criminal justice system (e.g., early prevention/intervention 
for high-risk youths) to best use limited resources when de-
signing and implementing public safety policies and pro-
grams. In combination with the efforts toward theoretical 
refinements to better develop a comprehensive and evi-
dence-based set of risk assessment instruments, method-
ological advancements have played significant roles in clas-
sifying individuals with higher risks of offending by 
minimizing prediction errors. 

Inspired by the actuarial risk assessment tools in econo-
metrics and public health, researchers have heavily relied 

on parametric statistical models (e.g., generalized linear 
models) to predict many criminological outcomes, such as 
drug use, arrest, recidivism, pretrial detention, incarcera-
tion, parole release, and inmate misconduct (Berk & Ble-
ich, 2013; Casey et al., 2011; Farrington & Tarling, 1985; 
Gottfredson & Gottfredson, 1986; Lowenkamp et al., 2001; 
Ngo et al., 2015; Pew Center on the States, Public Safety 
Performance Project, 2011; Sears & Anthony, 2004; Skeem 
& Monahan, 2011). Despite the consensus that more objec-
tive and scientific applications of these statistical methods 
work better than clinical or professional judgments made 
exclusively by subjective intuitions with prior experiences 
or opinions of the decision-makers (Berk, 2012; Gottfredson 
& Moriarty, 2006; Hastie & Dawes, 2001), their level of pre-
dictive accuracy is unimpressive (Lowenkamp et al., 2001; 
Van Voorhis & Brown, 1997). For example, Farrington & 
Tarling (1985) and Farrington (1987) found that the level 
of predictive accuracy from widely implemented statistical 
methods is not high, with a proportion of false positives 
and false negatives greater than 0.5. Among many possible 
reasons, strict and sometimes unrealistic assumptions of 
conventional parametric models (e.g., the linearity of re-
lationships between the predictor and outcome variables 
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and only two-way linear/additive interactions among spe-
cific predictors of interest; see also Gottfredson & Moriarty, 
2006) might limit the learning process of capturing critical 
but previously unexpected/unrecognized patterns in the 
data. 

Largely dissatisfied with the disappointingly low level of 
predictive accuracy of traditional risk assessment tools, al-
ternative strategies have been proposed, such as the ran-
dom forest (Breiman, 2001), support vector machine (SVM; 
Vapnik, 2010), and neural network (NN; Kartalopoulos, 
1995) methods. These machine learning (ML) methods, 
widely applied in both academia and industry, are more ef-
fective classification algorithms, at least in principle, than 
traditional parametric regression models. This is because 
they can “automatically handle non-linearity, handle noisy 
data, handle a large number of candidate predictors, auto-
matically search and estimate complex interactions, which 
quickly becomes both unfeasible and unstable by using clas-
sical statistics” (Tollenaar & van der Heijden, 2013, p. 566). 

Nonetheless, existing comparative studies have con-
cluded that such modern ML methods do not necessarily 
outperform traditional statistical models. Many compara-
tive studies have also noted that it is unlikely that ML algo-
rithms can make a noticeable difference unless other con-
ditions for successful prediction are satisfied, such as the 
availability of good predictors, meaningful variation in the 
predictors, and balance between classes in the outcome 
variable (Kuhn & Johnson, 2013). 

This study aims to assess whether a NN algorithm can 
outperform the traditional logistic regression (LR) when 
implemented to maximize its predictive capacity. Many 
other comparative studies have applied various ML algo-
rithms to the same dataset to select the one that performs 
best with little explanation about how they work and how 
their optimization processes are implemented. In contrast, 
we focus on only the two most widely used prediction meth-
ods that are relatively comparable and compare them in a 
way that is accessible for both academic researchers and 
practitioners. 

Berk & Bleich (2013) claimed that many findings unfa-
vorable to ML might result from improper implementations 
of the methods. To address their concerns, we built the final 
models after searching for the optimal tuning parameters 
that can best use the information available within the pre-
dictors and applied up-sampling and down-sampling meth-
ods that can address class imbalance in the prediction of 
rare events, such as arrest. Various ML methods often have 
inherently different learning algorithms and thus require 
unique optimization procedures to maximize their predic-
tive performance. Therefore, the result might be misleading 
if we mechanically apply default tuning parameters pre-
programmed in most statistical packages and report the 
summary findings for a fast and easy comparison of their 
relative performance. Specifically, we demonstrate and 
compare the logic behind these two models and the specific 
optimization procedures we employed to provide additional 
insight on whether and when ML can outperform conven-
tional approaches, which is understudied in the existing lit-
erature. 

Prior Comparative Studies on the Utility of 
Neural Networks Over Logistic Regression in 

Crime Prediction 

Unlike other modern ML techniques that have garnered 
relatively little attention in criminal justice research, the 
use of NNs for the prediction of criminological outcomes is 
not new. Thus, several comparative studies have assessed 
the advantages of NNs over conventional modeling strate-
gies, such as LR (Brodzinski et al., 1994; Caulkins et al., 
1996; Kartalopoulos, 1995; Liu et al., 2011; Ngo et al., 2018; 
Palocsay et al., 2000; Sears & Anthony, 2004; Tollenaar & 
van der Heijden, 2013). Nonetheless, the overarching pat-
tern observed in these studies with different samples and 
model applications demonstrates a level of predictive accu-
racy in crime prediction similar to that of LR when eval-
uations are performed on the testing sets independent of 
the training data. The preponderance of evidence might be 
better characterized as ‘mixed’ because some studies found 
that NNs outperform LR (often moderately), whereas other 
studies found that LR performs equally well or even better 
than NNs. 

Palocsay et al. (2000) compared the performance out-
comes of LR with those of NNs, assessing their capabilities 
of predicting criminal recidivism. Unlike many other studies 
that suggested NNs did not offer any significant improve-
ments over conventional statistical approaches in predict-
ing crime (e.g., Caulkins et al., 1996), they found consis-
tently higher levels of total accuracy and sensitivity for NNs 
than for LR even after checking the results from different 
model specifications. They concluded, “NN models are 
competitive with, and may offer some advantages over, tra-
ditional statistical models” (271). 

Similarly, Brodzinski et al. (1994) achieved 99% accuracy 
in predicting recidivism among 778 probationers using 
NNs. This study suggested that collecting and incorporating 
more and better predictors into the models was essential to 
minimize classification errors and maximize predictive ac-
curacy. A recent study by Ngo et al. (2018) reached a sim-
ilar conclusion. This study compared specific performance 
measures across different prediction models, such as LR, 
random forest, NN, and ensemble methods. The authors 
claimed that it is unlikely that one specific method con-
sistently outperforms the others on different performance 
criteria types representing various aspects of forecasting 
errors. Specifically, they found that NNs were appropriate 
when the prediction goal was to maximize either the speci-
ficity (true negatives) or overall accuracy (true negatives 
and true positives). 

However, even after adding more predictors than those 
used by Gottfredson & Gottfredson (1979, 1980), Caulkins 
et al. (1996) did not find any noticeable benefits of NN mod-
els predicting recidivism when they are applied tradition-
ally. Nonetheless, they still called for more research with 
more predictors that can help better classify offenders be-
cause it is possible that “the failure of prediction in this 
case is not due to inadequate statistical methods, but rather 
to inadequate knowledge and theory about what kind of 
variables and mechanisms are linked to future criminal be-
havior, and to limitations in obtaining satisfactory mea-
sures of these variables” (236). Sears & Anthony (2004) also 
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found that both LR and NNs performed similarly. However, 
they also called for further comparative evaluations with 
different data because the benefits of NNs might be best 
materialized if mere linear combinations of the covariates 
cannot detect complex and nonlinear data patterns. 

More recently, out of a similar motivation to address in-
consistent findings in existing comparative studies, Liu et 
al. (2011) compared LR, classification and regression tree 
(CART), and NN models for their predictive validity in re-
cidivism among 1,225 UK male prisoners based on a stan-
dardized risk assessment instrument. Despite using a multi-
validation procedure to reduce sampling error in the 
estimates of predictive accuracy and controlling for the low 
base rate to minimize prediction error and achieve a more-
balanced classification, the performance of NNs measured 
by the overall accuracy and area under the receiver operat-
ing characteristic curve (AUC) did not exhibit a significant 
improvement over those of the LR and CART models. Simi-
larly, based on the comparison of predictive accuracy across 
different models in terms of various performance measures, 
Tollenaar & van der Heijden (2013) found that classical sta-
tistical methods, such as LR and linear discriminant analy-
sis, perform equally well or sometimes even better than 
alternative ML methods, such as NNs and linear SVM in 
predicting recidivism. 

Current Study 

Given the inconsistent patterns in the existing literature, 
more rigorous, comprehensive, and diverse evaluation re-
search is necessary to assess potential contributions NNs 
can make in crime prediction and better understand the 
conditions in which NNs perform better than LR. In this 
study, we pursue this line of research by assessing the pre-
dictive capabilities of NNs with a relatively large sample of 
the general US youth population. Drawing on this relatively 
understudied sample, the current study explores whether 
NNs can yield substantially improved predictive accuracy 
over LR based on the same set of theoretically relevant 
predictors by extracting additional information (e.g., non-
linearities, complex interactions, and discontinuities) that 
cannot be detected using a simple additive LR model. Con-
sidering that these less favorable findings for ML methods 
might result from improper optimizations during the train-
ing phase of model building (Berk & Bleich, 2013), we tuned 
the models to maximize predictive accuracy after seeking 
optimal tuning parameters via systematic cross-validation 
procedures. In doing so, we attempted to make the ML pro-
cedures as transparent and interpretable as possible for 
both researchers and practitioners to address the “black 
box” issues inherent in the application and interpretation 
of ML methods (Zeng et al., 2017). 

Considering that too many model specifications must be 
considered when all possible interaction terms among pre-
dictors are added to the baseline model, we assess whether 
LR in its simplest additive form without any higher-order or 
interaction terms can still perform similarly to or even out-
perform NNs optimized to maximize the performance mea-
sure of primary interest. If the optimally tuned NN models 
perform better than the baseline LR model, we determine 
whether such patterns result from misspecifying the LR 

model. 

Analytic Strategies 

In summary, both LR and NN algorithms are designed to 
continue the iterative processes of minimizing their unique 
cost functions until optimal model parameters are identi-
fied, linking most properly input features (predictors) to the 
outcome variable. In this vein, NNs are very similar to LR 
because both methods search for a set of parameters  in 
multidimensional settings via unique learning algorithms 
for optimal classification. A vector of θ  (or multiple vectors 
of θ  in NNs) identified from the training sets is evaluated 
on independent testing sets to assess how well these predic-
tors forecast future outcomes presumed to be unrealized at 
the time of data collection. We present a summary of both 
methods highlighting their similarities and differences be-
cause our goals are to assess which method performs better 
and explicate how each procedure is implemented to maxi-
mize predictive accuracy. 

Logistic Regression 

Logistic regression is one of the most widely used statis-
tical methods in many disciplines, including criminal jus-
tice. It demonstrates powerful predictive effectiveness, al-
though it is relatively simple, fast, and easy to estimate the 
parameters in the hypothesis with LR compared with more-
complex ML methods. Moreover, LR is a school of classifi-
cation algorithms used to assign observations to a discrete 
set of classes. In contrast, the actual outcomes estimated 
by LR represent the predicted probabilities of success/fail-
ure of the discrete outcome given a set of input profiles. 
That is, LR is a probability-based classification algorithm in 
which the sigmoid function transforms the outcomes of the 
logit model (log of the odds) into the predicted probabili-
ties with values between 0 and 1. In addition, LR belongs 
to a class of generalized linear models because the log of 
the odds of an outcome, which can take any value from 
to , is estimated using a linear combination of predic-
tor values (weighted by parameter estimates) unless more-
complex nonlinear functional forms are explicitly modeled 
by adding corresponding (e.g., quadratic or cubic) terms: 

The outcome is classified as a positive event when 
approaches 1 and a negative event when  approaches 
0. The iterative process of maximum likelihood estimation 
via the gradient descent algorithm is repeated until it finds 
a set of parameter estimates that maximize the likelihood 
of observing the analyzed data. A baseline LR model can 
be adjusted to model a more-complex hypothesis if addi-
tional terms of nonlinearities or interactions are specified. 
We adopted the simplest functional form of LR for the inter-
est of simplicity, considering that an almost infinite number 
of alternative functional forms exist, especially when many 
predictors and interaction terms must be considered. 

Neural Networks 

Neural networks, along with SVM and random forest 
methods, are widely used ML methods in various fields as 
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alternatives to conventional LR because they are better 
suited for classification problems in which complex and 
nonlinear relationships exist among input and output vari-
ables (Bishop, 2009). Originally designed to simulate the 
functioning process of biological neurons in the human 
brain, NNs have advantages over LR because they can rel-
atively easily approximate any nonlinear functional form 
of relationship from data, unlike conventional parametric 
regression approaches in which functional forms must be 
specified a priori or after post-hoc modifications. The in-
ductive nature of the learning process in NNs allows for de-
tecting unknown and unforeseen patterns within the data. 

Despite the complex optimization procedures developed 
systematically to minimize the cost function in estimating 
parameters, the underlying theory behind the NN algorithm 
is relatively simple and straightforward. Like LR models, 
NNs estimate parameters in the hypothesis in training sets 
to be used for the classification of unrealized data – approx-
imated through independent testing sets – based on ob-
served data features. However, unlike LR models, the out-
come variable is modeled as a function of an intermediary 
set of unobserved variables (hidden units), which are mod-
eled as a function of the original input features. These hid-
den units are comparable to the biological neural system 
processing multiple input features in the human brain. 

The application of NNs can be very flexible because the 
number of hidden units and hidden layers can vary depend-
ing upon the research context and data structure to maxi-
mize predictive accuracy. Figure 1 reveals that each hidden 
unit  is modeled as a linear combination of the predic-
tor variables  and is transformed using a nonlinear sig-
moid function g(·), such as the logistic function (Kuhn & 
Johnson, 2013, p. 141). The binary outcome is nonlinearly 
linked to the hidden units through the logistic function. 

In Figure 1,  denotes the hidden units in layer l, and 
 is the matrix of parameters controlling the functional 

form mapping from layer l to layer l + 1. Like conventional 
regression models, the  coefficients in the following equa-
tions can be conceptualized as the effects of the predictors 
on hidden units: 

Although only one layer is incorporated in Figure 1 for the 
interest of parsimony, NNs can have multiple layers with 
varying numbers of hidden units. The outcome is modeled 
as a linear combination of hidden units, which is also trans-
formed using a nonlinear sigmoid function g(·). For exam-
ple, in a hypothetical situation in which only three hidden 
units are with one layer, the functional form of the NN 
model is expressed as follows: 

Figure 1. Conceptual Model of NNs with a Single 
Hidden Layer 

The model becomes extraordinarily complex as the number 
of hidden units and layers becomes greater. Thus, the 
process of a cross-validation search for the best number of 
hidden units and layers is often recommended to optimize 
the bias-variance trade-off in the prediction. 

Like LR, NNs are designed to infer the optimal parame-
ters that minimize the cost function. Specialized learning 
algorithms are repeated starting with random parameter es-
timate values to search for optimal parameters that best 
relate predictors, hidden units, and the outcome variable 
(Rumelhart et al., 1986).1 These are the called “feed-for-
ward” (information sources are processed from the input 
variables to hidden units and then to the output variable) 
and “back-propagation” (parameters are modified itera-
tively based on the error estimates transmitted back 
through the process) algorithms. 

Because the number of parameters increases dramati-
cally as the number of hidden units and layers increases, 
NNs tend to overfit the relationship between the predictors 
and outcome. A regularization method, such as weight de-
cay, is used to penalize large parameter estimates, as other 
ML methods add a penalty for large parameter values to im-
prove the generalizability of the prediction in the future/
unrealized data by reducing the variance involved in com-
plex models (Kuhn & Johnson, 2013, p. 143-145). Along 
with the optimal number of hidden units and layers, the op-
timal value of weight decay should also be searched for via 
cross-validation, making it another tuning parameter in the 
NN procedure. 

In summary, NNs have the flexibility to fit any nonlinear 
relationship among variables, which additionally con-
tributes to the model’s predictive capacity in the classifica-

Because NNs often involve numerous parameters, the model tends to find only locally (not globally) optimal parameter values. Multiple 
model estimation processes can be repeated with different starting values, averaging these results to produce a more stable prediction to 
address the instability in the model-building process (Kuhn & Johnson, 2013, p. 144). 
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tion. In addition, NNs allow for identifying unknown pat-
terns among all or subsets of predictors to build a prediction 
model customized for the specific analyzed data. 

Brief Overview of the Machine Learning 
Procedure 

Training, Testing, and Regularization 

Considering that crime prediction should be performed 
with data in which the outcomes are presumed to be yet 
unrealized, it is essential to work with two independent 
datasets representative of the target population for model 
building (training set) and model evaluation (testing set). 
The predictive errors result primarily from two sources: ‘ap-
proximation’ during the training phase and ‘generalization’ 
during the testing phase. Relying on the same dataset tends 
to yield overly optimistic performance for predictive models 
because errors resulting from too much variance in predict-
ing future examples are masked by focusing exclusively on 
minimizing the estimation bias (Berk, 2012). 

A systematic process of regularization is required via 
cross-validation to avoid such an overfitting problem of 
building models with too much complexity to optimize the 
bias-variance trade-off and maximize the overall predictive 
accuracy of the models. Models should be tuned to reduce 
a large amount of variance in the testing phase, even sacri-
ficing accuracy in the training phase. In practice, some ex-
ploratory procedures are necessary to search for the best 
regularization parameters via cross-validation. 

In this study, we selected a random subsample of training 
data (70%) to build predictive models and used the remain-
ing sample (30%) to evaluate each model. During the 
model-building phase, 10-fold cross-validation was con-
ducted to optimize the tuning parameters. 

Performance Measures 

In the extant ML literature, various measures have been 
used to assess the overall and specific aspects of model per-
formance, such as the overall accuracy, sensitivity, speci-
ficity, precision, Kappa, and the area under the receiver op-
erating characteristic curve (AUC)2 (Berk, 2012). The overall 
accuracy is the most widely used scale representing the pro-
portion of true positives and true negatives in the total clas-
sification outcomes. Considering that our primary goal is to 
maximize the predictive accuracy of those arrested in the 
future (true positives), sensitivity is also an important per-
formance measure in this study, which captures the propor-
tion of those correctly classified as positives among those 
with a true positive outcome. However, when comparing 
different models, the sensitivity is not always fixed but can 
be modified by adjusting the classification threshold. Thus, 
a trade-off exists between sensitivity and specificity, which 
captures the proportion of those correctly classified as neg-
atives among those with a true negative outcome. Thus, the 

AUC is often preferred when such a threshold for classifi-
cation is not fixed but can vary depending on the interests 
of decision-makers and the available resources for policy 
purposes. The Kappa statistic measures the concordance of 
the model prediction and observed classes, which is calcu-
lated by (O − E)/(1 – E), where O represents the observed ac-
curacy, and E denotes the expected accuracy based on the 
marginal totals of the confusion matrix. We focus primarily 
on the sensitivity measure, even sacrificing other measures, 
such as specificity, to compare the performance of LR and 
NN models for the above-noted reason. Accordingly, the NN 
models are tuned to maximize the sensitivity of classifying 
true positives among other performance measures. 

Data 

For our proposed comparative study, we used the Na-
tional Longitudinal Study of Adolescent Health, a nation-
ally representative sample of US middle and high school 
students enrolled during the mid-1990s. The age of the par-
ticipants in the sample at the baseline interview ranged 
from 11 to 21 years old. The study participants were re-in-
terviewed up to Wave 4, which was implemented in 2008. 
We analyzed the public-use data with a randomly selected 
one-half of the core sample and one-half of the oversample 
of African American adolescents whose parents earned a 
college degree (n = 6,504). Of the total sample of 6,504, only 
5,067 cases had valid data for the arrest outcome and were 
analyzed in subsequent evaluations. These cases were ran-
domly assigned to training (3,547; 70%) and testing (1,520; 
30%) sets for model building and model evaluation, respec-
tively. By creating an independent testing set with the cur-
rent prospective longitudinal panel data, we approximated 
the situations in which the outcome (future arrest) was not 
realized at the time of data collection, although we already 
know the observed outcome in the testing set. 

Measures 
Outcome variable: Arrest 

The participants were asked if they had ever been ar-
rested (0 = “no” and 1 = “yes”) to measure the arrest history 
of the sample during the last follow-up interview conducted 
in Wave 4 when the interviewees were between 24 and 34 
years of age. 

Predictors 

Demographic Characteristics: Key demographic charac-
teristics, such as being male, Black, Hispanic, Asian, or an-
other race, were measured in Wave 1 and were included in 
the models as binary variables (0 = “no” and 1 = “yes”) using 
female (for gender) and White (for race/ethnicity) as refer-
ence categories, respectively. 

Educational Risk Factors: As essential risk factors for fu-

The receiver operating characteristic (ROC) assesses the model’s capacity to discriminate between two classes by comparing the ranks of 
each pair of cases in both classes with respect to the probability value (Mossman, 1994). The ROC is often represented by a graph that 
plots the number of false positive results against the number of false negative results. 
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ture arrest among the general youth population, the status 
of high school dropouts and the level of educational diffi-
culty were measured in Wave 1 and used in the prediction. 
The high school dropout status was a single binary variable 
(0 = “no” and 1 = “yes”), and educational difficulty was a 
composite scale of three individual scores measuring re-
spondents’ experiences of repeated grades, school suspen-
sion, and expulsion from school. The three dichotomously 
measured items (0 = “no” and 1 = “yes”) were summed to the 
educational difficulty scale (range: 0 to 3). 

Emotional Risk Factors: Emotional risk factors, such as 
hopelessness and depression, were measured in Wave 1 and 
were included as predictors for future arrest. A hopeless 
scale was constructed from three indicators: “felt hopeful 
about the future” (reverse coded), “thought your life had 
been a failure,” and “felt life was not worth living” (within 
the past week). The depression scale comprised four in-
dicators: “bothered by things,” “felt depressed,” “had the 
blues,” and “felt sad” during the past week. Response cat-
egories for each indicator ranged from 0 (never/rarely) to 3 
(most/all of the time), which were summed to calculate the 
corresponding scale scores. As another emotional risk fac-
tor, suicidal attempts were measured in Wave 1 by asking 
respondents how many times they had attempted to com-
mit suicide in the past 12 months. The response categories 
included 0 (0 times), 1 (1 time), 2 (2-3 times), 3 (3-4 times), 
and 4 (6 or more times), which were recoded as a binary 
variable to address the issue of extreme skewness in the dis-
tribution (0 = 0 times and 1 = at least one time). 

Parental Risk Factors: In Wave 3, the experience of phys-
ical abuse by primary caregivers was measured using a sin-
gle item: “How often have your parents or other adult care-
givers slapped, hit, or kicked you?” Response categories 
were 1 (one time), 2 (two times), 3 (three to five times), 4 
(six to ten times), 5 (more than ten times), and 6 (this has 
never happened, which was recoded to 0). Neglect by par-
ents was also measured in Wave 3 using the following two 
items: “By the time you started 6th grade, how often had 
your parents or other adult caregivers left you home alone 
when an adult should have been with you?” and “How often 
had your parents or other adult caregivers not taken care 
of your basic needs, such as keeping you clean or providing 
food or clothing?” Response categories were the same as the 
physical abuse item, and the scale was created by aggregat-
ing two items with scores ranging from 0 to 10. 

Behavioral/Situational Risk Factors: A wide range of be-
havioral and situational risk factors was measured in Wave 
1, such as violent behavior, victimization, minor delin-
quency, drug and alcohol use, smoking cigarettes, immature 
sexual intercourse, romantic relationships in the past 12 
months, and unstructured socializing. Violent behavior 
comprises seven items: physical fighting, hurting someone, 
shooting or stabbing someone, threatening with a weapon, 
group fighting, using a weapon in a fight, and using a knife 
or gun in a fight. Each item was measured using the binary 
response category (0 = “no” and 1 = “yes”), and a composite 
scale was created by aggregating the individual scores. 

A violent victimization experience scale was created by 
aggregating three individual items (having had a knife 
pulled on the individual, having been shot, or having been 
stabbed), also measured using two response categories (0 = 

“no” and 1 = “yes”). Minor delinquency was measured using 
10 questions on the respondents’ engagement in the follow-
ing minor delinquent behaviors: graffiti, damaging prop-
erty, lying to parents, taking merchandise without paying, 
running away, driving without permission, stealing some-
thing worth more than $50 and less than $50, trespassing, 
and behaving in a loud, rowdy, or unruly way in a public 
space. The minor delinquency scale was created by aggre-
gating 10 items answered using binary response categories 
(0 = “no” and 1 = “yes”). 

A use-of-drugs scale was created similarly by aggregating 
four dichotomous response items (pot, cocaine, inhalants, 
and other illegal drugs). The experiences of drinking alco-
hol, smoking cigarettes, immature sexual intercourse, and 
romantic relationships were also binary variables (0 = “no” 
and 1 = “yes”) and were included in the models as distinct 
predictors. Unstructured socializing was measured by ask-
ing respondents how often they spent time with their 
friends in the past week. Responses included 0 (not at all), 1 
(1-2 times), 2 (3-4 times), and 3 (5 or more times). 

Individual Protective Factor: The importance of religion 
was measured in Wave 1 by asking respondents whether re-
ligion was important to them. The question was initially an-
swered using four response categories of 1 (very important), 
2 (fairly important), 3 (fairly unimportant), and 4 (not im-
portant at all), but was recoded dichotomously (0 = “fairly 
unimportant/not important at all” and 1 = “very important/
fairly important”). 

Neighborhood Protective Factors: First, the scale of neigh-
borhood collective efficacy was created by summing the 
scores of five individual items measured by binary re-
sponses (0 = “no” and 1 = “yes”) in Wave 1: “You know most 
people in the neighborhood.” “In the past month, you have 
stopped on the street to talk with someone who lives in 
your neighborhood.” “People in this neighborhood look out 
for each other.” “Do you use a physical fitness or recreation 
center in your neighborhood?” “Do you usually feel safe in 
your neighborhood?” Second, the respondents’ evaluation 
of their neighborhood was measured in Wave 1 by the two 
following items: “On the whole, how happy are you with liv-
ing in your neighborhood?” “If, for any reason, you had to 
move from here to some other neighborhood, how happy or 
unhappy would you be?” These items were assessed using a 
5-point Likert scale (1 = “not at all/very unhappy,” 2 = “very 
little/a little unhappy,” 3 = “somewhat/would not make any 
difference,” 4 = “quite a bit/a little happy,” and 5 = “very 
much/very happy”). The items were summed to create the 
scale after reverse coding the second item. 

Results 

Table 1 lists the descriptive statistics of the variables that 
we analyzed in both LR and NN models. The base rate of ar-
rest was .29, which was not low enough to negatively affect 
the forecasting leverage of the predictors (Berk, 2012, p. 5).3 

The demographic profiles indicate that males comprised 
slightly less than half of the sample (46%), and the racial 
composition of the participants was diverse (White: 52%; 
Black: 24%; Hispanic: 10%; Native American: 4%; Asian: 
4%; and others: 6%). The predictors demonstrated signif-
icant variations across individuals, and our preliminary 
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Table 1. Descriptive statistics 

Variables Mean/% SD Min Max 

Outcome Variable 

.29 - 0 1 

Predictors 

Demographic information (W1) 

.46 - 0 1 

.24 .42 0 1 

.10 .30 0 1 

.04 .18 0 1 

.04 .18 0 1 

.06 .24 0 1 

Educational risk factors (W1) 

.15 - 0 1 

.51 .74 0 3 

Emotional risk factors (W1) 

1.49 1.43 0 9 

1.94 2.21 0 12 

.04 - 0 1 

Parental risk factors (W3) 

.59 1.32 0 5 

.98 1.83 0 10 

Behavioral/situational risk factors (W1) 

.75 1.15 0 7 

.17 .46 0 3 

1.93 1.97 0 10 

.18 .51 0 4 

.55 - 0 1 

.20 - 0 1 

.38 - 0 1 

.56 - 0 1 

1.98 1.00 0 3 

Individual protective factor (W1) 

.78 - 0 1 

Neighborhood risk factors (W1) 

3.32 1.19 0 5 

7.42 1.97 0 10 

n = 5,067 

* denotes binary variables and their means represent the proportions 

Arrest* (W4) 

Male* 

Race* (white as a reference) 

Black 

Hispanic 

Native American 

Asian 

Others 

Highschool dropout* 

Educational difficulty 

Hopelessness 

Depression 

Suicidal attempt* 

Physical abuse 

Neglect 

Violent behavior 

Violent victimization 

Minor delinquency 

Use of drug 

Use of alcohol* 

Smoking cigarette* 

Immature sexual intercourse* 

Romantic relationships* 

Unstructured socializing 

Religion* 

Collective efficacy 

Neighborhood evaluation 

checks suggest that no redundant or noninformative pre-
dictors might negatively affect the predictive model perfor-
mance (Kuhn & Johnson, 2013, p. 488).4 Because NNs are 
sensitive to the nature of variation in the predictors (e.g., 

different scales, severely skewed distributions, and extreme 
outliers: Kuhn & Johnson, 2013), these predictors were cen-
tered and standardized prior to modeling to maximize the 
model’s predictive capacity. 

This is often called a “low base rate problem” in prediction research (Berk, 2012, p. 10) and is often observed in the study of criminologi-
cal outcomes that rarely occur. 

These results are available upon request. 

3 

4 
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Using the ‘glm’ function in R (R Core Team, 2018), we 
first ran the LR model with the simplest additive functional 
form, without any polynomial and interaction terms, to 
compare its predictive performance with that of NNs. Then, 
we ran a series of NN models with the model code ‘nnet’ 
in R (Venables & Ripley, 2002) to search for optimal tuning 
parameters via cross-validation and minimize the influence 
of the class imbalance by applying up-sampling and down-
sampling methods. Tables 2 reports the performance of 
these models when they were built on the training set (n 
= 3,547) and evaluated on the testing set (n = 1,520) not 
used in the model-building procedures. To achieve our goal 
of maximizing the sensitivity of arrest prediction (i.e., in-
creasing the true positives in the prediction of future ar-
rest), we first trained and tuned the NN models with ‘sen-
sitivity’ as an option during the process of selecting an 
optimal model (Model 2 in Table 2). However, we also used 
the ROC as a criterion in the optimization process to de-
termine whether different options significantly differ in the 
primary findings (Model 3 in Table 2). These options were 
not available for the LR models and could not be applied 
(Model 1 in Table 2). These tuning processes of optimizing 
NN models adjust the model parameters to increase predic-
tive accuracy instead of modifying the threshold for post-
hoc classification of positive outcomes based on the pre-
dicted probabilities estimated using the same model 
parameter values. Specifically, we identified the optimal 
number of hidden units (neurons) and decay parameters via 
10-fold cross-validation to maximize model performance.5 

Our goal was to improve the model sensitivity because our 
‘substantive’ accuracy measure of interest was via these ad-
ditional optimization processes, even sacrificing other per-
formance outcomes, such as the specificity, overall accu-
racy, and Kappa value. 

Table 2 demonstrates that the simple additive LR model 
performs equally well or slightly better than the NN models 
with tuning for all performance measures. In particular, the 
number of true arrestees correctly classified as arrested by 
the models (165 out of 437: sensitivity = 0.3776) was the 
same in Models 1 (LR) and 2 (NNs with tuning optimized 
using sensitivity), although Model 1 performed a bit better 
at predicting true negatives (not arrested) than Model 2. 
The results were 1,005 out of 1,083 (specificity = 0.9280) 
for Model 1 and 1,001 out of 1,083 (specificity = 0.9243) 
for Model 2. The sensitivity index of Model 3 (NNs with 
tuning optimized using the ROC) was slightly higher than 
that of Model 1 (0.3822 and 0.3776, respectively), whereas 
its specificity index was a bit lower than that of Model 1 
(0.9224 and 0.9280, respectively). Overall, more complex 
and time-consuming NN models, even with optimal tuning 
parameters, did not outperform the conventional LR model 
in predicting future arrest outcomes within the current gen-
eral US youth population. 

Considering that sensitivity was our primary perfor-
mance measure of interest, the model performance in Table 
2 is not satisfactory because more than half of the true pos-

itives are still incorrectly predicted by Models 1 to 3. Such 
disappointing sensitivity levels could result from many 
known and unknown factors affecting predictive accuracy, 
such as the absence of good predictors, lack of variation 
in the predictors, and imbalance between classes. Signifi-
cantly, the ML literature suggests that when a severe im-
balance between negative and positive outcomes occurs, 
predictive models tend to be overwhelmed by the patterns 
observed in the majority classes (e.g., those who were not 
arrested in this study), and thus achieve good specificity 
(Kuhn & Johnson, 2013, p. 421). 

Because other issues are inherent limitations that cannot 
be addressed with the current secondary data, we attempted 
to overcome the class imbalance issue by approximating a 
situation in which good class balance was achieved via up-
sampling and downsampling the data. In the upsampling 
procedure, cases from the minority class are resampled with 
replacement until their number equals the number of ma-
jority class cases. In the downsampling procedure, majority 
class cases are randomly selected to match the number of 
minority class cases. Accordingly, the total sample sizes for 
the upsampled and downsampled training data were 5,054 
and 2,040, respectively, although the sample sizes for the 
testing data remained the same for all models. As before, we 
also relied on the sensitivity measure to determine the op-
timal tuning parameter values in cross-validation for both 
NN models (Models 2 and 4) in Table 3. 

The performance outcomes in Table 3(b) demonstrate 
that, if we compare the same ML methods, down-sampling 
performs better for LR (except for specificity) and up-sam-
pling performs better for NNs (except for sensitivity). How-
ever, if we compare LR and NNs within the same sampling 
procedures, LR still performs noticeably better than NNs. 
The only exception is the sensitivity outcomes for the 
down-sampling data, which are 0.7002 and 0.7048 for LR 
and NNs, respectively. Considering the trade-off between 
the sensitivity and specificity, if we modify the threshold for 
classification, a much higher level of sensitivity is achieved 
(0.7414) when we sacrifice the specificity of the LR model to 
the same level as in the NN model (0.6999) by slightly low-
ering the cut-off value for the positive class from the con-
ventional value of 0.5 to the value of 0.47. 

In summary, we found that our simple additive LR mod-
els perform better overall than more-complex NN models 
and better classify true positives correctly in particular. 
Coupled with the better interpretability of the parameter 
estimates in the LR models, LR is still a powerful and useful 
ML algorithm in crime prediction with the current sample 
of the general youth population, not to mention its mathe-
matical efficiency compared with more-complex ML meth-
ods. Primarily, we failed to discover any noticeable advan-
tages of NNs over LR even after implementing the 
additional procedures of model tuning and up-sampling 
and down-sampling methods recommended in the recent 
literature (Berk, 2012; Kuhn & Johnson, 2013) to better op-
timize the model’s predictive capacity. 

We did not vary the number of hidden layers during the cross-validation for parsimony to save time during the model estimation process 
because our preliminary analyses suggested that adding more layers did not improve the performance of the NN models. 
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Table 2. Performance of the Models without Up- and Down-sampling 

a. Contingency Tables of Classification 

 

Model 1: LR (without tuning) 

Observed (True) Total 

Predicted 
(Classified) 

Not arrested Arrested 

Not arrested 1005 272 1277 

Arrested 78 165 243 

Total 1083 437 1520 

 

Model 2: NNs (with tuning optimized with 'sensitivity') 

Observed (True) Total 

Predicted 
(Classified) 

Not arrested Arrested 

Not arrested 1001 272 1273 

Arrested 82 165 247 

Total 1083 437 1520 

After 10-fold cross-validation, # of hidden units = 5 and decay = 1 were applied. 

 

Model 3: NNs (with tuning optimized with 'ROC') 

Observed (True) Total 

Predicted 
(Classified) 

No-arrest Yes-arrest 

Not arrested 999 270 1269 

Arrested 84 167 251 

Total 1083 437 1520 

After 10-fold cross-validation, # of hidden units = 10 and decay = 2 were applied. 

 

b. Performance Outcomes 

 

Model 1 Model 2 Model 3 

LR (without polynomial and 
interaction terms) 

NNs (with tuning optimized with 
‘sensitivity’) 

NNs (with tuning optimized 
with ‘ROC’) 

Accuracy 0.7697 0.7671 0.7671 

Kappa 0.3522 0.3468 0.3489 

Sensitivity 0.3776 0.3776 0.3822 

Specificity 0.9280 0.9243 0.9224 

For NNs with tuning optimized by "sensitivity', # of hidden units = 5 and decay = 1 were applied via 10-fold cross-validation. 

For NNs with tuning optimized by "ROC", # of hidden units = 10 and decay = 2 were applied via 10-fold cross-validation. 

Conclusion 

Our primary goal was to fully assess whether NNs can 
outperform LR in predicting future arrests, especially when 
fine-tuned through cross-validation to achieve class bal-
ance in the outcome variable using up-sampling and down-
sampling procedures to maximize model sensitivity. Con-
trary to our expectations, no discernible differences were 
observed in the predictive accuracy between LR and NN 
models. As often reported in earlier or even more recent 

comparative studies, even simple additive LR models with-
out interaction terms performed as well as more-complex 
NN models, even after searching for an optimal solution in 
the bias-variance trade-off. Thus, these models are mathe-
matically less efficient and less intuitive to both researchers 
and practitioners. 

Such patterns were observed consistently across differ-
ent model specifications. We followed standardized proce-
dures in modern ML methods by creating two independent 
samples representing the target population to build pre-
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Table 3. Performance of the Models with Up- and Down-Sampling 

a. Contingency Tables of Classification 

 

Model 1: LR (with Up Sampling) 

Observed (True) Total 

Predicted (Classified) Not arrested Arrested 

Not arrested 799 140 939 

Arrested 284 297 581 

Total 1083 437 1520 

Model 2: NNs (with Up Sampling) 

Observed (True) Total 

Predicted (Classified) Not arrested Arrested 

Not arrested 787 145 932 

Arrested 296 292 588 

Total 1083 437 1520 

After 10-fold cross-validation, # of hidden units = 6 and decay = 0 were applied. 

Model 3: LR (with Down Sampling) 

Observed (True) Total 

Predicted (Classified) Not arrested Arrested 

Not arrested 794 131 925 

Arrested 289 306 595 

Total 1083 437 1520 

Model 4: NNs (with Down Sampling) 

Observed (True) Total 

Predicted (Classified) No-arrest Yes-arrest 

Not arrested 758 129 887 

Arrested 325 308 633 

Total 1083 437 1520 

After 10-fold cross-validation, # of hidden units = 10 and decay = 2 were applied. 

 

b. Performance Outcomes 

 

Up-sampling Down-sampling 

Model 1 Model 2 Model 3 Model 4 

LR NNs LR NNs 

Accuracy 0.7211 0.7099 0.7237 0.7013 

Kappa 0.3800 0.3580 0.3912 0.3570 

Sensitivity 0.6796 0.6682 0.7002 0.7048 

Specificity 0.7378 0.7267 0.7331 0.6999 

For NNs with Up-sampling, # of hidden units = 6 and decay = 0 were applied via 10-fold cross-validation. 

For NNs with Down-sampling, # of hidden units = 10 and decay = 2 were applied via 10-fold cross-validation. 

dictive models and evaluate how they perform with new 
datasets (Berk, 2012, p. 10). In particular, we used a rep-
resentative sample of the general US youth population. We 
created two independent samples through a random selec-
tion process: a training set with inferred model parameters 
and a testing set to assess the learned ML algorithms and 
inferred parameters. 

We emphasize that it is critical to use an independent 
but representative population sample in the model evalua-
tion to approximate future examples with unrealized out-
comes. We optimized the NN models by searching for the 
best functional form and tuning parameters via cross-val-
idation to address the concerns of the proponents of ML 
methods. They claim that less optimistic conclusions re-
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garding the predictive capacity of various ML methods in 
the extant comparative studies result from insufficient or 
even improper implementations of the procedures during 
the training phase of model building (e.g., Berk & Bleich, 
2013). Nonetheless, LR worked equally well as or even out-
performed NNs for all compared performance measures, in-
cluding sensitivity, which is of primary interest in future ar-
rest prediction. 

Considering that our primary goal was to classify true ar-
restees correctly, the model performance was still unsatis-
factory with a sensitivity value of less than 0.4. Our final 
models addressed this issue by adopting sampling methods 
to balance the cases with negative and positive outcomes, 
which have often been recommended in the recent ML lit-
erature to minimize the undesired influence of class im-
balance on model performance (Berk, 2012; Kuhn & John-
son, 2013). Overall, the sensitivity increased substantially 
after applying up-sampling and down-sampling procedures 
for both LR and NN models. However, LR remained more 
competitive than NNs for all criteria applied to assess the 
models’ successful prediction of future arrest in the current 
sample. 

Despite the less favorable results for NNs, we still call for 
more of this line of research, comparing the strengths and 
weaknesses of each ML algorithm. Our less optimistic re-
sults might result from the current data’s inherent limita-
tions, not from the predictive methods themselves. Indeed, 

the prediction of various criminological outcomes is depen-
dent on the data, and the results can vary widely across 
various applications (Jamain & Hand, 2008). The potential 
of modern ML in maximizing predictive accuracy might be 
fully materialized with ‘big data’ with a much larger sam-
ple size and more input features than those adopted in this 
study (Berk & Bleich, 2013, p. 519). Our findings suggest 
that predictive models derived from a priori knowledge are 
not guaranteed to perform well with new datasets. Suppose 
other characteristics of individuals that are seemingly un-
related to the risk of arrest indeed contribute to the pre-
diction in very implicit and subtle ways that are unknown 
to researchers and practitioners. In that case, modern ML 
techniques might be better suited for identifying and em-
ploying such hidden patterns in the data. 

Most importantly, rapid progress has been made in ML 
theories and methods, and NNs are central to such recent 
developments (e.g., deep learning with the convolution NN 
or recurrent NN). Our traditional approach of applying basic 
multilayer perceptron NNs might have inherent limitations 
when competing with conventional statistical models in 
this vein. Future research should address these limitations 
and explore how ML methods should be implemented to re-
alize their full potential to maximize predictive accuracy. 
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